BEU 1st Sem Maths Important Questions 2024 – CSE, Electrical & Civil

Preparing for the BEU 1st Sem Maths Important Questions 2024 – CSE, Electrical & Civil, this page guide covers the most important questions, based on the latest syllabus and PYQs. Access the model paper, high-weightage topics, and key questions to boost your preparation and score better.


SECTION A: Short Answer Type Questions

(1) Find the rank of the matrix. (PYQ) $$ \begin{bmatrix} 3 & 2 & -1 \\ 4 & 2 & 6 \\ 7 & 4 & 5 \end{bmatrix} $$

See Solution
BEU 1st Sem Maths Important Questions, math electrical, math civil, beu maths pyq, math cse

(2). Define the Jacobian and write its formula for transformation from Cartesian to polar coordinates. (High Weightage)

See Solution
BEU 1st Sem Maths Important Questions, math electrical, math civil, beu maths pyq, math cse

(3). State and prove Rolle’s Theorem. (PYQ)

See Solution

(4). Expand $$ f(x) = \frac{1}{1 + x^2} $$ using Taylor Series about x = 0. (PYQ)

See Solution
BEU 1st Sem Maths Important Questions, math electrical, math civil, beu maths pyq, math cse

(5). Write the formula and condition for applying Simpson’s 1/3 Rule. (High Weightage)

See Solution
BEU 1st Sem Maths Important Questions, math electrical, math civil, beu maths pyq, math cse

(6). State Parseval’s theorem for Fourier series. (PYQ)

See Solution
BEU 1st Sem Maths Important Questions, math electrical, math civil, beu maths pyq, math cse

(7). Define and explain linearly independent vectors. (High Weightage)

See Solution
BEU 1st Sem Maths Important Questions, math electrical, math civil, beu maths pyq, math cse

SECTION B: Long Answer Type Questions
Q1. Linear Algebra – I

(a) Use Gauss-Jordan method to find inverse of:(PYQ) $$ A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix} $$

See Solution
(a) Use Gauss-Jordan method to find inverse of:(PYQ) $$ A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix} $$

(b) Determine the value of p such that the rank of matrix is 3. (PYQ) $$ \begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ p & 2 & 2 & 2 \\ 9 & 9 & p & 3 \end{bmatrix} $$

See Solution
(b) Determine the value of p such that the rank of matrix is 3. (PYQ) $$ \begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ p & 2 & 2 & 2 \\ 9 & 9 & p & 3 \end{bmatrix} $$

Q2. Linear Algebra – II

(a) Verify Cayley-Hamilton theorem for:$$ A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} $$and hence find $ A^{-1} $. (PYQ)

See Solution
(a) Verify Cayley-Hamilton theorem for:$$ A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} $$and hence find $ A^{-1} $. (PYQ)
(a) Verify Cayley-Hamilton theorem for:$$ A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} $$and hence find $ A^{-1} $. (PYQ)

(b) Find eigenvectors and eigenvalues of: (PYQ)$$ \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $$

See Solution
(b) Find eigenvectors and eigenvalues of: (PYQ)$$ \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $$
(b) Find eigenvectors and eigenvalues of: (PYQ)$$ \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $$
(b) Find eigenvectors and eigenvalues of: (PYQ)$$ \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $$

Q3. Calculus & Multivariable Calculus

(a) Obtain the Fourier series of $ f(x) = \pi x $ on $ (0, 2) $ and show:(PYQ) $$ \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8} $$

See Solution
(a) Obtain the Fourier series of $ f(x) = \pi x $ on $ (0, 2) $ and show:(PYQ) $$ \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8} $$
(a) Obtain the Fourier series of $ f(x) = \pi x $ on $ (0, 2) $ and show:(PYQ) $$ \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8} $$

(b) Using Beta and Gamma functions, evaluate: $$ \iiint x^{l-1} y^{m-1} z^{n-1} \, dx\,dy\,dz $$ over the region $ x + y + z \le 1, \quad x,y,z \ge 0 $. (PYQ)

See Solution
(b) Using Beta and Gamma functions, evaluate: $$ \iiint x^{l-1} y^{m-1} z^{n-1} \, dx\,dy\,dz $$ over the region $ x + y + z \le 1, \quad x,y,z \ge 0 $. (PYQ)

Q4. Numerical Methods + Vector Calculus

(a) Use Runge-Kutta 4th order method to solve: $$ \frac{dy}{dx} = \frac{y – x}{y + x}, \quad y(0) = 1, \quad h = 0.5 $$(PYQ)

Solution: Runge-Kutta 4th Order Method Solution

Given:

The differential equation: $$ \frac{dy}{dx} = \frac{y – x}{y + x}, \quad y(0) = 1 $$ with step size ( h = 0.5 ).

Method:

The RK4 method computes: $$ y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) $$ where: $$ k_1 = h \cdot f(x_i, y_i) $$ $$ k_2 = h \cdot f\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right) $$ $$ k_3 = h \cdot f\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right) $$ $$ k_4 = h \cdot f\left(x_i + h, y_i + k_3\right) $$

$ Compute ( k_1 )$

$At ( x_0 = 0 ), ( y_0 = 1 )$: $$ k_1 = 0.5 \cdot \frac{1 – 0}{1 + 0} = 0.5 \cdot 1 = 0.5 $$

$ Compute ( k_2 )$

$At ( x = 0.25 ), ( y = 1 + \frac{0.5}{2} = 1.25 )$: $$ k_2 = 0.5 \cdot \frac{1.25 – 0.25}{1.25 + 0.25} = 0.5 \cdot \frac{1}{1.5} \approx 0.333333 $$

$Compute ( k_3 )$

At $( x = 0.25 ), ( y = 1 + \frac{0.333333}{2} \approx 1.166666)$: $$ k_3 = 0.5 \cdot \frac{1.166666 – 0.25}{1.166666 + 0.25} = 0.5 \cdot \frac{0.916666}{1.416666} \approx 0.323529 $$

$Compute ( k_4 )$

At$ ( x = 0.5 ), ( y = 1 + 0.323529 \approx 1.323529 )$: $$ k_4 = 0.5 \cdot \frac{1.323529 – 0.5}{1.323529 + 0.5} = 0.5 \cdot \frac{0.823529}{1.823529} \approx 0.2258 $$

Combine for $( y(0.5) )$

$$ y(0.5) = 1 + \frac{1}{6}(0.5 + 2 \times 0.333333 + 2 \times 0.323529 + 0.2258) $$ $$ = 1 + \frac{1}{6}(2.039524) \approx 1.3399 $$

Final Answer:

$$ \boxed{y(0.5) \approx 1.340} $$

(b) Evaluate the surface integral using Stokes’ theorem for: $$ \vec{F} = (3x – y)\hat{i} – 2yz^2\hat{j} – 2y^2z\hat{k} $$over the surface of sphere $ x^2 + y^2 + z^2 = 16, \quad z > 0 $. (PYQ)

See Solution
(b) Evaluate the surface integral using Stokes’ theorem for: $$ \vec{F} = (3x - y)\hat{i} - 2yz^2\hat{j} - 2y^2z\hat{k} $$over the surface of sphere $ x^2 + y^2 + z^2 = 16, \quad z > 0 $. (PYQ)
(b) Evaluate the surface integral using Stokes’ theorem for: $$ \vec{F} = (3x - y)\hat{i} - 2yz^2\hat{j} - 2y^2z\hat{k} $$over the surface of sphere $ x^2 + y^2 + z^2 = 16, \quad z > 0 $. (PYQ)
(b) Evaluate the surface integral using Stokes’ theorem for: $$ \vec{F} = (3x - y)\hat{i} - 2yz^2\hat{j} - 2y^2z\hat{k} $$over the surface of sphere $ x^2 + y^2 + z^2 = 16, \quad z > 0 $. (PYQ)

Conclusion:

In this post, we provided detailed solutions for BEU Maths PYQs for CSE / BEU B.Tech CSE Math Solved Papers​ previous year questions.BEU CSE Math 2023 PYQ with Solutions and 1st Semester Math Solved Papers are now available to help students prepare effectively for Bihar Engineering University exams Understanding these solutions will help you strengthen your core concepts and improve your exam performance. Keep practicing and exploring related topics to enhance your knowledge.


 You May Also Like: (BEU 1st Sem Maths Important Questions)

 Stay Updated – Join Our Community:

 Never miss an update! Join our WhatsApp group to receive the latest BEU 1st Sem Maths Important Questions and 1st Semester Math Solved Papers are now available to help students prepare effectively for Bihar Engineering University exams, NPTEL answers, and study resources directly on your phone.
 Join Now – PrabhakarGuru Updates


 Disclaimer:

The solutions provided here are based on our best knowledge and are for educational purposes only. We encourage students to refer to their official study materials and consult their professors for further clarification.


Relevant Keywords: (BEU 1st Sem Maths Important Questions, math cse, beu maths pyq, math civil, math electrical)

BEU 1st Sem Maths Important Questions, math cse, beu maths pyq, math civil, math electrical, BEU 1st Sem Maths Important Questions 2024 – CSE, Electrical & Civil

Leave a Comment